Vision -

an example of a

GPCR-regulated signalling cascade

Morphology of the vertebrate eye

Photoreceptor cells are <u>not</u> evenly distributed!

Fovea is free of blood vessels

< 10 to approx. 500 photons / s

approx. 30 to 1.000.000 photons / s

rods

cones

Photoreceptors

Absorption spectra of visual pigments

photopigments

rods: rhodopsin

cones: blue, green, red opsin

Light response

The outer segment of a photoreceptor cell contains all components to

- absorp light,
- amplify the signal
- generate an electrical cellular response.

Walter Schröder Forschungszentrum Jülich

Recording the dark current with a suction electrode

Schnapf & Baylor (1987)

Light response of a photoreceptor cell

The light response at the molecular level

Cyclic nucleotide-gated ion channels

Photoisomerisation of retinal

Photocycle of rhodopsin

Rhodopsin is bleached by light.

Once bleached it no longer can absorb light!

Schwartz, T. W. & Hubbell, W. L. (2008) Nature 455, 473-474

Hyperpolarisation

Amplification

1 photon / 1 rhodopsin \rightarrow ≥ 100 transducins \rightarrow PDE (~4000 cGMP/sec)

 \sim 500.000 - 1.000.000

Recovery of the dark state

Recovery of the dark state

- 1. phosphorylation of rhodopsin by rhodopsin kinase
- 2. binding of arrestin to phosphorylated rhodopsin
- 3. intrinsic GTPase activity of transducin (α -subunit)
 - →inhibition of PDE
- 4. re-synthesis of cGMP by guanylyl cyclase
- 5. (re-)opening of CNG channel

Summary

The vertebrate retina can adapt to light intensities ranging over 9 – 10 orders of magnitude.

Rod photoreceptors can detect single photons. Cone photoreceptors allow vision at day light.

Phototransduction utilizes a highly amplifying, GPCR-activated enzymatic cascade.

Summary

cGMP is the cellular messenger of phototransduction.

Receptorpotential / amplification: hydrolysis of cGMP and closing of CNG channels.

Rods and cones express celltype specific opsin genes with distinct absorption properties.

Ca²⁺-dependent cellular processes re-establish the dark state of photoreceptors.